Question No	Answer	Question No	Answer
(1)	2	(26)	3
(2)	2	(27)	1
(3)	5	(28)	1
(4)	3	(29)	5
(5)	3	(30)	4
(6)	5	(31)	3
(7)	2	(32)	3
(8)	1	(33)	2
(9)	1	(34)	1
(10)	4	(35)	5
(11)		(36)	e ducethon 2
(12)	2	(37) General	2
(13)	COX N	(38)	2
(14)	Or 3 mines	(39)	2
(15)	Controlle less	(40)	5
(16)	he Weture 5	(41)	2
(17)	4	(42)	4
(18)	3	(43)	2
(19)	3	(44)	3
(20)	2	(45)	4
(21)	4	(46)	1
(22)	2	(47)	2
(23)	5	(48)	4
(24)	2	(49)	2
(25)	4	(50)	1

G.C.E. (A.L.) Support Seminar - 2015 Physics - Paper I Answer Guide

- 2 -Physics - Paper II Answer Guide

Part A - Structured Essay

Additional Instructions.

- (i) Although it is not mentioned in the marking scheme, give the marks if a student has provided correct answers.
- (ii) Relevant marks should be given when $g = 9.8 \text{ m s}^{-2}$ is substituted instead of $g = 10 \text{ m s}^{-2}$
- (iii) When $\pi = 3$ has been used instead of $\pi = 3.14$, give relevant marks.
- (iv) Marks should be given only for the substitution, when a wrong numerical value that is obtained in a problem is substituted in a another part of the same question.
- (v) The direction must be marked in a ray of light. (at least two marks of directions should be there)

1. (a)
$$\mu = \frac{F}{R}$$
 (01 Mark)
(b) (i) $\mu = \frac{F}{R}$ (01 Mark)
(ii) $F = (m + W)^{R}$ (01 Mark)
(iii) (1) Keeping the strings horizontally.
(2) Keeping the strings horizontally.
(2) Keeping the vocien block in the same place on the table. (01 Mark)
(iv) Obtaining the corresponding weights of the scale pan and the weights, when
the wooden block starts to move slightly. (01 Mark)
(v) $(m + w_{o})g = \mu (M + W)g$
 $m = \mu M + (\mu W - w_{o})$ (01 Mark)
(v) $(m + w_{o})g = \mu (M + W)g$
 $m = \mu M + (\mu W - w_{o})$ (01 Mark)
(v) $(1) \mu = 0.4$ (01 Mark)
(2) $\mu W - w_{o} = 0.25$ $W = \frac{0.25 + 0.025}{0.4} = \frac{0.275}{0.4}$
 $W = 0.69 \text{ kg}$ (with the units) (01 Mark)
(0.68 - 0.69) \text{ kg}

(c) (i) Instance : To slide the wooden block slightly on the wooden plate towards down.

Measurements : l_1 - Vertical height, l_2 - Horizontal distance

or

 l_1 - Horizontal distance, l_2 - Vertical height

or

(ii)
$$\mu = \frac{l_2}{l_1}$$
 or $\mu = \frac{l_1}{l_2}$

(01 Mark)

2. (a) (i) (1) Surface area (A)

- (2) Excess temperature $(\theta \theta_{\rm R})$
- (3) Nature of the surface (Emissivity of the surface) (01 Mark)
- (ii) For any value of excess temperature under forced convention.
 (For small values of excess temperature under natural convention less than 30°C)
 (01 Mark)

(b) (i) Thermometer (iii) Triple beam balance / Electronic scale (iii) Stop watch (01 Mark)

(c) (i) Agreed Temperature in the liquid, can not be considered as the temperature of the

external surface, because conductivity of glass is low. (01 Mark)

(ii) (Should be more than
$$\frac{2}{3}$$
 of the height of the container) (01 Mark)

- (iii) To reduce the internal surface area, of the container that does not contact with the liquid. (To reduce the surface area, that does not come to the equilibrium with the liquid or for a close idea)
 (01 Mark)
- (iv) To equalize the effective surface areas which dissipates the heat. (01 Mark)

$$\frac{400 \times 10^{-6} \times 10}{4 \times 0.8 \times 10^{-6}} \left(1 - \frac{1}{s}\right) = 10^7 \times 10^{-4}$$
(01 Mark)
$$s = 5$$

[See page 5

50
$$(1 + 200 \alpha)$$

 $\alpha = \frac{2}{350}$
 $= 5.71 \times 10^{-3} \,^{\circ}\text{C}^{-1}$ (01 Mark)

(ii) (1) Having a higher boiling point.

Insulator for electricity

(2)

For both (01 Mark)

5. (a) (i)
$$P + \frac{1}{2} \rho V^2 + h\rho g = k$$
 (constant) (01 Mark)
 $P = Pressure of the gas (energy of pressure)$
 $\frac{1}{2} \rho V^2 = Kinetic energy of unit volume of the gas
 $h\rho g = Potential energy of unit volume of the gas (01 Mark)$
(ii) Streamline flow
incompressible
Non viscous (01 Mark)
(b) (i) 30 m s⁻¹ (01 Mark)
(ii) $V = roe = 3.5 \times 10^{-2} \times 2\pi \times 10 = 2.1 \text{ ms}^{-1}$
(iii) (1) Velocity of air at point $A = 30 - 2.1$
(2) Velocity of air at point $A = 30 - 2.1$
(3) Mark)
(iv) (1) $P_A + \frac{1}{2} \rho V_A^2$ $P_B + \frac{1}{2} \rho V_B^2$
 $P_A + \frac{1}{2} \rho V_A^2$ $P_B + \frac{1}{2} \rho V_B^2$
 $P_A - P_B = \frac{1}{2} \times 1.3 [(32.1)^2 - (27.9)^2]$
 $= 163.8 \text{ Pa}$ (162 - 165)
(2) $F = (\Delta P) A$
 $= 163.8 \times \pi r^2$
 $= 171.6 \times 3 \times (3.5 \times 10^{-2})^2$
 $= 0.6 \text{ N}$ (0.58 - 0.61) (01 Mark)$

(v)
$$\bigvee s = ut + \frac{1}{2} at^2$$

 $1.8 = \frac{1}{2} \times 10 \times t^2$
 $t = \sqrt{0.36} s = 0.6 s$
 $s = ut$
 $= 0.6 \times 30$
 $= 18 m$ (01 Mark)

(vi) Horizontal acceleration
$$F = ma$$

$$a = \frac{0.6}{150 \times 10^{-3}} \text{ m s}^{-1}$$
(01 Mark)

$$s = ut + \frac{1}{2} at^{2}$$

$$d = 0 + \frac{1}{2} \times \left(\frac{0.6}{150 \times 10^{-3}}\right) \times (0.6)^{2}$$
(01 Mark)

$$d = \frac{4}{2} \times 0.36$$

$$d = 2 \times 0.36$$

$$d = 0.72 \text{ m}$$
(i)

$$\int_{0}^{10} \frac{1}{V} - \frac{1}{U} = \frac{1}{f}$$
(01 Mark)

6. (*a*)

$$-\frac{1}{2.5} - \frac{1}{50} = \frac{1}{f}$$

$$f = \frac{-50}{21}$$

$$P = \frac{1}{f}$$

$$= \frac{21}{50} \times 100$$

$$= +42 \text{ D}$$

$$(b) \quad (i) \quad +\frac{1}{400} - \frac{1}{\infty} = \frac{1}{f}$$

$$+\frac{1}{400} = \frac{1}{f}$$

P = -0.25 D

(01 Mark)

(**01 Mark**) [See page 8

(ii) \rightarrow Towards (01 Mark)

$$\frac{1}{V} - \frac{1}{U} = \frac{1}{f}$$
 Applying for eyepiece

For healthy eye

$$+\frac{1}{25} - \frac{1}{U} = \frac{1}{-10}$$
 (01 Mark)
$$\frac{1}{U} = \frac{1}{25} + \frac{1}{10}$$

$$U = \frac{50}{7} \text{ cm}$$

For the eye with the defect

$$+\frac{1}{50} - \frac{1}{U'} = -\frac{1}{10}$$

$$U' = \frac{50}{6} \text{ cm}$$
(01 Mark)

The distance that must be moved
$$(U'-U) = \frac{58}{6} - \frac{50}{7}$$

 $= 50 (\frac{1}{6} - \frac{1}{7})$
 $= 50 \times \frac{1}{42}$
 $U'-U = \frac{50}{42} = 1.19 \text{ cm}$ (1.2 cm / 12 mm) (01 Mark)
(iii) $M' = (\frac{V}{f_0} - 1) (\frac{D}{f_c} + 1)$
 $= (3-1) \times 6$
 $= 12$ (01 Mark)
7. (a) (i) Young Modulus = Tensile event
 $= 12$ (01 Mark)
 $F_{ac} + F_{c}$ (01 Mark)
 $F_{ac} + F_{c}$ (01 Mark)
 $\left[(\frac{\pi \times 1 \times 10^{-6} \times 1.2 \times 10^{11}}{2}) + (\frac{\pi \times 4 \times 10^{-6} \times 2 \times 10^{11}}{2}) \right] e = 2000$
 $\left[(\frac{3 \times 1 \times 10^{-6} \times 1.2 \times 10^{11}}{1.38}) + (\frac{3 \times 4 \times 10^{-6} \times 2 \times 10^{11}}{2}) \right] e = 2000$ (01 Mark)
 $(1.8 \times 10^{5} + 12 \times 10^{5}) e = 2000$
 $e = \frac{2000 \times 10^{-5}}{1.38}$
 $e = 1.45 \times 10^{-3} \text{ m}$ (144.93 $\times 10^{-3} \text{ m}$) (01 Mark)
 $F_{ac} = \frac{3 \times 1 \times 10^{-6} \times 1.2 \times 10^{11}}{2} \times 1.45 \times 10^{-3}$
 $= 260 \text{ N}$ (260 - 261) (01 Mark)

(ii)
$$F_{\text{steel}} = \frac{3 \times 4 \times 10^{-6} \times 2 \times 10^{11}}{2} \times 1.45 \times 10^{-3}$$

= 17.4 × 10²
= 1740 N (1739 - 1740) (01 Mark)

(ii) The sphere should more a larger distance to obtain a terminal velocity of 4666 m s⁻¹, a pond with such a depth is not exist.
 (01 Mark)

(ii) (iii) *(e)* (i) $S \uparrow$ F Р t (02 Marks or 01) If all three are correct two marks If only two are correct one mark **8.** (a) (i) -Q (01 Mark) $E = \frac{V}{d}$ (ii) (01 Mark) $V = Ed = -2 \times 10^3 \times 2 \times 10^{-2}$ $V = -40 \, \text{V}$ (- mark is essential) (01 Mark) the General Education (iii) $E = \frac{\sigma}{\varepsilon} = \frac{Q}{A\varepsilon_0}$ (01 Mark) 2×10^{6} Substitution (01 Mark) -12 $Q = 2 \times 9 \times 10^{-11}$ $= 1.8 \times 10^{-10} \text{C}$ (01 Mark) (b) (i) Eq = ma $a = \frac{Eq}{m}$ (01 Mark) $V^2 = u^2 + 2as$ $0 = (V_0 \sin 60)^2 - \frac{2 Eq}{m} d_2$ (01 Mark) $d_2 = \frac{\left(6 \times 10^6 \times \frac{\sqrt{3}}{2}\right)^2 9 \times 10^{-31}}{2 \times 2 \times 10^3 \times 1.6 \times 10^{-19}}$ $d_2 = 3.79 \times 10^{-2} \,\mathrm{m}$ (01 Mark)

 $= 3.79 \, \text{cm}$

- 11 -

(ii)
$$C = \frac{\varepsilon_0 A}{d}$$

 $\Delta C = \varepsilon_0 A \left[\frac{1}{d_1} - \frac{1}{d_2} \right]$ (01 Mark)
 $= 9 \times 10^{-12} \times 100 \times 10^{-4} \left[\frac{1}{2} - \frac{1}{3.79} \right] \times \frac{1}{10^{-2}}$
 $= 2.12 \times 10^{-12} \text{ F}$ (01 Mark)

(iii) work done =
$$\frac{1}{2} \frac{Q^2 d_1}{\varepsilon_0 A} - \frac{1}{2} \frac{Q^2 d_2}{\varepsilon_0 A}$$
 (01 Mark)
= $\frac{1}{2} \frac{Q^2}{\varepsilon_0 A} (d_1 - d_2)$
= $\frac{1}{2} \times \frac{(1.8 \times 10^{-10})^2 (3.79 - 2)10^{-2}}{9 \times 10^{-12} \times 10^{-2}}$
= $3.22 \times 10^{-9} J$
= 3.22 nJ (01 Mark)
(iv) Yes, $(3.79 - 2) \times 10^{-2} \times 2 \times 10^3 \text{ V} = 35.8 \text{ V}$ (01 Mark)
(c)

9(A). (a) (i)
$$(150 - 60) = 1.5 (3 + R)$$
 (01 Mark)
 $\frac{90}{1.5} = 3 + R$

$$R = 57 \,\Omega \tag{01 Mark}$$

(ii)
$$\frac{150 \times 1.5 \times 40 \times 3600}{3600 \times 10^3}$$
 kWh = 9 kWh (01 Mark)

(iii) Rs.
$$12.50 \times 9 = Rs. 112.50$$
 (01 Mark)

(iv)
$$\frac{I^2 R + I^2 r}{EI} = \frac{1.5^2 \times 57 + 1.5^2 \times 3}{150 \times 1.5}$$
 (01 Mark)
Percentage = $\frac{1.5 [60]}{150} \times 100 \%$
= 60 % (01 Mark)

[See page 13

(b) (i) A minimum current flows, when connected to A

(500 + 1000) $I_{\min} = 60$ $I_{\min} = 0.04 \text{ A}$ (01 Mark)

A minimum current flows, when connected to B

$$500 I_{\text{max}} = 60$$

 $I_{\text{max}} = 0.12 \text{ A}$ (01 Mark)

(ii) Potential difference

$$V_{\text{max}} = 497 \times 0.12$$

= 59.64 V
$$V_{\text{min}} = 497 \times 0.03$$

= 14.91 V (For both 01 Mark)

(c) (i) Minimum

current when connected to A = 0Potential difference = 0

(ii) Maximum

Potential difference when connected to B = 59.46 V

U

Current =
$$0.12 \text{ A}$$
 (0.119 Å)

(For both 01 Mark)

Effective resistances of *AB* and
$$X = \frac{497 \times 1000}{1497} \Omega = 332 \Omega$$
 (For both 01 Mark)

★ There is no considerable difference in current at two instances (or the currents are equal) Having a very small internal resistances, is the reason. If it is perfect cell with no internal resistance the currents at two situations should be equal. (01 Mark)

(d) (i) Current =
$$0.58 \text{ A}$$
 (01 Mark)

(ii)
$$62 - 2I_1 = 100 \times 0.58$$

 $I_1 = 2 A$
Current flows in to the battery $E = 2 - 0.58$
 $= 1.42$ (01 Mark)
 $E + 1.42 \times 3 = 58$
 $E = 53.74 \text{ V}$ (01 Mark)

9(B)(a) (i)
$$(10 - 1.4) = 2 \times 10^3 I$$
 Potential difference $= 10 - 1.4$
 $I = \frac{8.6}{2 \times 10^3}$ $= 8.6 V$
 $I = 4.3 \text{ mA}$ (For both 01 Mark)
(ii) Current $= 0$ (01 Mark)

(*d*) (i) In sequentral logic circuits - Because of the ability to memorize it gives the out puts considering the previous and present inputs.

In combinational logic circuits - gives the out puts, suitable the inputs at that time moment.

(01 Mark)

S	R	Q
0	0	Not changed
0	1	0
1	0	1
1	1	Invalid

(01 Mark) (01 Mark) (01 Mark)

For circuit

For Labelling

10(A) (*a*) (i) Total heat obtained by water and the pressure cooker = $1 \times 4200 (80 - 30) + 200 (80 - 30)$ (01 Mark)

$$= 2.1 \times 10^5 + 0.1 \times 10^5$$

 $= 2.2 \times 10^5 \text{ J}$ (01 Mark)

(ii) Mean rate of heat loss =
$$\frac{1500 \times 80}{100} - \frac{2.2 \times 10^5}{200}$$
 (01 Mark)

(iii) Rate of heat loss at 80 °C =
$$\frac{Q_{30} + Q_{80}}{2} = 100 \text{ W}$$

$$Q_{80} = 200 \text{ W} \text{ (Because } Q_{30} = 0)$$
 (01 Mark)

(b)
$$1200 t = 320 t + 2.2 \times 10^{\circ}$$
 (02 Marks)
 $t = \frac{2.2 \times 10^{\circ}}{880} = 2500 s$ (01 Mark)
(c) (i) $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ (01 Mark)
For dry air $\frac{(101 - 54)}{273 + 30}$ (01 Mark)
Total pressure = (110 + 58.63) kPa
= 168.63 kPa (01 Mark)

(ii) Because the pressure inside the container is greater than the atmospheric pressure

(01 Mark)

(01 Mark)

(iv) At a top of a mountain

Boiling point of the water at top of a mountain is lower than sea level (01 Mark)

10(B)(a) (i) A - Filament (Anode)

- B Vacuumed type photo electric cell
- *C* As the target (Cathode)

(01 Mark)

(ii)	To obtain the higher energy to accelerate electrons by applying a higher voltage between A and C	e (01 Mark)
(iii)	Metal tungsten - to withstand the large amount of heat when the electrons are decelerate (higher melting point)	(01 Mark)
(iv)	Increasing the voltage of the source	(01 Mark)
(v)	$E = \frac{hc}{\lambda}$	(01 Mark)
	$= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{5 \times 10^{-12} \times 1.6 \times 10^{-19}}$	(01 Mark)
	$= 2.48 \times 10^5 \text{ ev}$	(01 Mark)
(b)	K_{\max} Y (i)	(01 Mark)
	W (ii)	(01 Mark)
	f_0 (iii)	(01 Mark)
(c) (i)	$hf = \emptyset + K_{max}$ 6.6 × 10 ⁻³⁴ × 7 × 10 ¹⁴ = 0 + 1.65 × 10 ⁻¹⁹	
	$\emptyset = 46.2 \times 10^{20} - 1.65 \times 10^{-19}$	
Wo	ork function of the metal $Q = 2.97 \times 10^{-19} \text{ J} (1.85 \text{ eV})$	(01 Mark)
(ii)	$eV_{s} = K_{max}$ $V = 1.65 \times 10^{-10} e^{-10} e^{-1$	(01 Mark)
	$v_{\rm s} = \frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}}$	
	= 1.03 V	(01 Mark)
(iii	$\emptyset = hf_0 \\ 2.97 \times 10^{-19}$	(01 Mark)
	$f_0 = \frac{1}{6.6 \times 10^{-34}}$	
	$= 0.45 \times 10^{15}$	
	$= 4.5 \times 10^{14} \text{ Hz}$	(01 Mark)

* * *